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Some rationalizability results for dynamic games

Ken-Ichi Akao,∗ Tapan Mitra† and Gerhard Sorger‡

We study the relation between dynamical systems describing the equilibrium behav-
ior in dynamic games and those resulting from (single-player) dynamic optimization
problems. More specifically, we derive conditions under which the dynamics gener-
ated by a model in one of these two classes can be rationalized by a model from the
other class. We study this question under different assumptions about which funda-
mentals (e.g. technology, utility functions and time-preference) should be preserved
by the rationalization. One interesting result is that rationalizing the equilibrium
dynamics of a symmetric dynamic game by a dynamic optimization problem that
preserves the technology and the utility function requires a higher degree of impa-
tience compared to that of the players in the game.
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1 Introduction

Because rationality is one of the central hypotheses of modern economics, many economic
models are formulated as optimization problems or as games. The key difference between
these two frameworks is that the former describes the behavior of a single decision-maker
whereas the latter takes into account the strategic behavior of several interacting agents.
An interesting question then is whether these two classes of models generate results that
are observationally distinguishable. We address this question in a dynamic context. More
specifically, we define a rather general class of dynamic games that contains the class of dy-
namic optimization problems, and we study whether the dynamics generated by a dynamic
game can also be generated by a (simpler) dynamic optimization problem. Therefore, the
paper contributes to the economic literature on intertemporal inverse problems or, as they
are also called, rationalizability problems. In that literature, one seeks to find conditions
under which a given outcome (e.g. a dynamical system) can be represented as the solution
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of an economically meaningful model that satisfies certain assumptions. As for dynamic
optimization models satisfying the standard assumptions of optimal growth theory, this
literature is quite extensive. The pioneering works are Boldrin and Montrucchio (1986)
and Deneckere and Pelikan (1986), and a survey is given in Sorger (2006).

One of the main motivations for the present study is that dynamic optimization models
are far better understood than dynamic games. If it is possible to show that the equilibrium
dynamics of dynamic games can be represented as optimal solutions of dynamic optimiza-
tion problems, then one can apply the powerful apparatus of dynamic optimization theory
to analyze the structure of equilibria of games. The rationalization of equilibrium dynamics
by dynamic optimization problems can also provide interesting additional insights, if the
fundamentals of the dynamic optimization problem are related in an unambiguous way to
those of the underlying game. We will illustrate this by means of examples in which equi-
librium dynamics generated by a game can only be rationalized by a dynamic optimization
problem with the same specification of technology and utility function if the discount factor
in the dynamic optimization problem is smaller than that in the game. In other words, the
distortions caused by strategic interactions in the dynamic game are reflected by greater
impatience in the rationalizing dynamic optimization problem.

The paper proceeds as follows. In Section 2, we introduce the notation and define
the class of dynamic games. The games belonging to this class have a natural interpreta-
tion as common property resource models but, due to the generality of the specification,
many other applications are also possible. The equilibrium concept we are using is strict
Markov-perfect Nash equilibrium (MPNE), which is probably the most popular equilib-
rium concept for dynamic games of this form. Dynamic optimization problems are defined
as special games with a single player. This class of dynamic optimization problems basically
coincides with the class of optimal growth models that has been studied extensively in
the rationalizability literature; see Stokey and Lucas (1989) for extensive coverage of these
models or Sorger (2006) for their use in rationalizability questions.

In Section 3, we briefly discuss the problem of representing optimal solutions of dynamic
optimization problems as equilibria of dynamic games. Although this problem seems trivial
(because the class of dynamic games contains all dynamic optimization problems), we show
that it is not if we impose certain properties on the structure of the game (e.g. by fixing the
number of players), on the form of the equilibria (e.g. symmetry) or on the fundamentals
that should be preserved in the transition from the dynamic optimization model to the
dynamic game (e.g. technology and time-preference).1

In Section 4, we turn to the main topic of the paper; namely, to the problem of
rationalizing the equilibrium dynamics of a dynamic game by a (single player) dynamic
optimization problem. This problem is more challenging than that in Section 3, because the
class of dynamic games is much larger than the class of dynamic optimization problems.
The problem is also more relevant as it broadens the scope of the representative agent
model. We first show that equilibria of dynamic games can exhibit phenomena that cannot
occur in dynamic optimization problems satisfying standard assumptions. Despite this fact,

1
Dana and Montrucchio (1986) address a similar problem and restrict the class of games to duopoly games in
which the players make alternating moves.
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we are able to prove a rationalizability result in a rather general framework. A noteworthy
feature of this result is that both the technology and the time-preference are preserved by
the rationalization. We use the famous “great fish war” game from Levhari and Mirman
(1980) to illustrate how the requirement that certain fundamentals are preserved by a
rationalization imposes unambiguous relations between other fundamentals. Indeed, any
dynamic optimization problem that rationalizes the equilibrium dynamics of the “great
fish war” using the same specification of the technology must necessarily also preserve the
form of the utility function and it must necessarily have a smaller discount factor. We also
discuss an example from growth theory in which the equilibrium dynamics of a game can
only be rationalized by a corresponding representative agent model if the time-preference
factor of the representative agent is smaller than the common time-preference factor of the
players in the game. In the last part of Section 4, we show that this relation between the
discount factors of dynamic games and the corresponding dynamic optimization problems
that we observed in the examples must also hold in a somewhat broader context of games
with isoelastic utility functions.

Section 5 contains concluding remarks. All proofs are presented in Section 6.

2 Definitions and preliminaries

In this section we formally define the class of dynamic games and dynamic optimization
problems under consideration and we explain the concept of rationalizability. Time evolves
in discrete periods; that is, the time variable t takes values in the set of positive integers
N. Furthermore, we denote by xt−1 ∈ X the vector of state variables at the end of period
t − 1 (or, equivalently, at the beginning of period t). The state space X is assumed to be a
non-empty subset of R

m
+, the non-negative orthant of m-dimensional Euclidean space.

The technology of the economy is described by the transition possibility set � ⊆ X × X
and by the return function R : � �→ R+. The transition possibility set � contains all pairs
(x, y) ∈ X × X such that a transition from state x to state y is possible within one period.
For each x ∈ X , we call �x = {y ∈ X | (x, y) ∈ �} the x-section of �, and we assume that
�x is non-empty for all x ∈ X . A state trajectory (xt−1)∞

t=1 is feasible if it satisfies xt ∈ �xt−1

for all t ∈ N. The value of the return function, R(x, y), denotes the amount of output that
is available for consumption in a given period during which the state moves from x to y.

The economy is populated by n players, where n ∈ N. All players are infinitely-lived and
identical. We denote by c i

t player i’s consumption level in period t . Given a feasible state
trajectory (xt−1)∞

t=1, the vector of individual consumption levels (c 1
t , c 2

t , . . . , c n
t ) ∈ R

n
+ is

feasible in period t , if it satisfies
∑n

i=1 c i
t ≤ R(xt−1, xt ) for all t ∈ N. Player i ∈ {1, 2, . . . ,

n} seeks to maximize the objective functional

∞∑
t=1

ρt−1u
(
c i

t , xt−1

)
,

where ρ ∈ (0, 1) is the discount factor and u : R+ × X �→ R is the utility function, which
may depend on the player’s own consumption as well as on the state of the economy.
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The game under consideration is described by the fundamentals (n, X , �, R, u, ρ). It
is a simultaneous-move game with perfect information. Each player i adopts a stationary
Markovian strategy σ i : X �→ R+ that determines the individual consumption level in
each period t as a function of the state of the system at the beginning of that period; that is,
c i

t = σ i (xt−1). A strategy profile (σ 1, σ 2, . . . , σ n) is feasible if, for any initial state x ∈ X ,
there is a feasible path (xt−1)∞

t=1 that satisfies x0 = x and
∑n

i=1 σ i (xt−1) ≤ R(xt−1, xt ) for
all t ∈ N.

A strategy profile (σ 1, σ 2, . . . , σ n) is a strict MPNE if it is feasible and if, for each
possible initial state x ∈ X and for each player i, the dynamic optimization problem

max(
c i

t , xi
t−1

)∞
t=1

{
lim inf

T→∞

T∑
t=1

ρt−1u(c i
t , xi

t−1)

}

subject to
(
xi

t−1, xi
t

) ∈ � for all t ∈ N,

R(xi
t−1, xi

t ) −
∑
j 
=i

σ j (xi
t−1) − c i

t ≥ 0 for all t ∈ N, xi
0 = x (1)

has a unique solution (c i∗
t , xi∗

t−1)∞
t=1 that satisfies the following two conditions:

(i) c i∗
t = σ i (xi∗

t−1) for all t ∈ N.
(ii) There exists a feasible path (xt−1)∞

t=1 with initial state x0 = x such that xi∗
t = xt

holds for all i ∈ {1, 2, . . . , n} and all t ∈ N.
The strict MPNE (σ 1, σ 2, . . . , σ n) is symmetric if there exists a function σ : X → R+

such that σ i = σ holds for all i ∈ {1, 2, . . . , n}. We say that a function F: X → X is
rationalized by a dynamic game (n, X , �, R, u, ρ) if, for all x0 ∈ X , it holds that the game (n,
X , �, R, u, ρ) with initial state x0 has a strict MPNE generating a state trajectory (xt−1)∞

t=1

that satisfies the difference equation xt = F(xt−1).
A dynamic optimization problem is a special case of a dynamic game in which

the number of players, n, is equal to 1. The goal of the present paper is to de-
termine under which assumptions the equilibrium dynamics that are generated by
a dynamic game can be rationalized by a dynamic optimization problem, and vice
versa.

3 Rationalization by a dynamic game

Because a dynamic optimization problem is a special case of a dynamic game with a single
player, it is obvious that the dynamics generated by a dynamic optimization problem can
always be rationalized by a dynamic game. This finding, however, becomes non-trivial
if we impose additional restrictions on the game (e.g. the number of players) or on the
form of the equilibrium (e.g. symmetry). Such a result is the content of the present section
and is included here for completeness and to set the stage for the material presented
later.

To get started, let us point out that the dynamics generated by the dynamic optimization
problem (i.e. a single-player dynamic game) (1, X , �, R, u, ρ) in which the utility function u
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is strictly increasing in consumption coincides with the dynamics generated by the problem
(1, X , �, R̃, pc , ρ), where pc(c, x) = c and R̃(x , y) = u(R(x , y), x). In words, in the case
of dynamic optimization problems, the different roles played by the return function R and
the utility function u are not really identified. In this section, we shall start from a model
of the form (1, X , �, R, pc , ρ) and we will simplify the presentation by dropping n = 1
and u = pc from the notation. Hence, a dynamic optimization problem will be denoted by
(X , �, R, ρ) and it takes the form

max
(xt )∞

t=1

{
lim inf

T→∞

∞∑
t=1

ρt−1 R(xt−1, xt )

}

subject to (xt−1, xt ) ∈ � for all t ∈ N.
(2)

We denote by V : X �→ R+ ∪ {∞} the optimal value function of (X , �, R, ρ). It is
known that this function satisfies the Bellman equation

V(x) = max
y

{R(x , y) + ρV(y) | (x , y) ∈ �}. (3)

If it is true for all x ∈ X that the problem on the right-hand side of (3) has a unique solution,
say, y = h(x), then we call the function h: X → X the optimal policy function of (X , �, R,
ρ). Note that h is the optimal policy function of (X , �, R, ρ) if and only if h is rationalized
by (X , �, R, ρ). We are now ready to state the main result of the present section.2

Theorem 1 Let (X , �, R, ρ) be a dynamic optimization problem with optimal value function
V and optimal policy function h, where h: X �→X is a given function and V (x) < ∞ for all
x ∈ X . For every n ≥ 2there exists a utility function u : R+ × X �→ Rsuch that the dynamic
game (n, X , �, R, u, ρ) rationalizes h through a symmetric strict MPNE.

The strength of Theorem 1 derives from two facts. First, symmetry of the equilibrium
has been imposed and, second, we have allowed ourselves only very little freedom for the
construction of the dynamic game. This is the case because we have fixed the number of
the players n, and because the rationalization preserves the transition possibility set �, the
return function R, and the discount factor ρ.3 This means that the only degree of freedom
in the specification of the dynamic game (n, X , �, R, u, ρ) concerns the utility function u.

Theorem 1 can be used to obtain explicit solutions for dynamic games, based on explicit
solutions to representative agent problems. While explicit solutions to the latter class of
problems are not abundant, explicit solutions to the former class of problems are rare in

2
All proofs can be found in Section 6.

3
If we allow the technology R to change, the rationalization in both directions is rather trivial: (i) The optimal
policy function h of a dynamic optimization problem (1, X , �, R, u, ρ) with the optimal consumption policy
σ is rationalized by the dynamic game (n, X , �, R̃, u, ρ) with R̃(x , y) = R(x , y) + (n − 1)σ (x) for any
n ≥ 2. (ii) The equilibrium policy function h of the symmetric dynamic game (n, X , �, R, u, ρ) with a
symmetric strategy σ is rationalized by the optimal dynamic optimization problem (1, X , �, R̃, u, ρ) with
R̃(x , y) = R(x , y) − (n − 1)σ (x). These observations were made by a referee.
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comparison. We conclude this section by illustrating this remark with Weitzman’s example
of a representative agent problem, as reported in Samuelson (1973).

Let the state space be X = [0, 1] and let the transition possibility set � be defined as
� = X × X . Next, define R : � �→ R+ by

R(x , z) = x1/2(1 − z)1/2 for all (x , z) ∈ �.

Finally, choose ρ ∈ (0, 1). Then, we have the dynamic optimization problem (X , �, R, ρ).4

It is known that the function h defined by

h(x) = ρ2(1 − x)

x + ρ2(1 − x)
for all x ∈ X (4)

is the optimal policy function of this dynamic optimization problem Thus, the socially
optimal solution generates the dynamics

xt+1 = h(xt ) for t ≥ 0 (5)

given any x0 ∈ X .
Now suppose we consider the same environment with n = 2 identical players. The proof

of Theorem 1 tells us that if we define the utility function of each player as:

u(c , x) = (c/2) + (1/4)R(x , h(x)), (6)

where h is given by (4), then the two-person dynamic non-cooperative game (2, X , �, R,
u, ρ) also generates the dynamics given by (5).

Since R is decreasing in z, and h(x) is decreasing in x, R(x, h(x)) is increasing in
x both because of the first argument of R and because of the second argument of R.
One thus has a positive stock effect in the utility function equation (6). This can be
interpreted in the following way. The non-cooperative dynamic game can produce the
same dynamics as the representative agent’s (or social planner’s) problem if each player
has an appropriate conservationist motive (reflected in a positive stock effect). This positive
stock effect compensates for the typical tendency to consume more of the resource in a
dynamic game than in the social planner’s problem, when the period utility function (as
well as the discount factor and technology) is the same in both cases.

4 Rationalization by a dynamic optimization problem

We now turn to the problem of rationalizing the equilibrium dynamics of a dynamic game
by a dynamic optimization problem. This problem is more complicated because the class

4
We are presenting the model in a somewhat different way than Samuelson (1973). Thus, in our formulation,
R(x, z) is the amount of output available for consumption when the state moves from x to z, and the utility
from consumption is measured by the consumption itself. In Samuelson’s formulation, R(x, z) is the reduced-
form utility function, obtained from a primitive utility function based on the consumption of two goods,
bread and wine, and x (respectively, z) is the amount of labor allocated today (respectively, tomorrow) to the
production of a third good, grape juice, which through a process of aging becomes wine in one period.
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of dynamic games is more general than the class of dynamic optimization problems. To
appreciate this point consider the class of dynamic optimization problems (X , �, R, ρ)
for which X and � are convex sets and R is a strictly concave function. It is well known
that the optimal policy function of any such problem is continuous on X . However, there
exist dynamic games (n, X , �, R, u, ρ) for which X , � and R satisfy the abovementioned
convexity assumptions, for which u is a strictly increasing and strictly concave function of
consumption, and for which the equilibrium dynamics are given by xt+1 = F(xt ), where F
is a discontinuous function; see Dutta and Sundaram (1993) for an example. This clearly
demonstrates that equilibria of dynamic games can exhibit phenomena that are ruled out
in dynamic optimization problems. Nevertheless, it is possible to prove a partial converse
of Theorem 1, and we shall do so in the first part of this section. Thereafter, we shall show
in the context of two examples that rationalizing the equilibrium dynamics by a dynamic
optimization problem featuring the same technology and utility function as the original
game implies that the discount factor of the optimization problem is smaller than that of
the game.5 We will conclude the section by presenting a result that generalizes the latter
finding to a wider class of games.

4.1 A partial converse of Theorem 1

Let (n, X , �, R, u, ρ) be a dynamic game and let (σ , σ , . . . , σ ) with σ : X �→ R+ be a
symmetric strict MPNE of that game. We impose the following assumptions.

Assumption 1 (a) The instantaneous utility function u : R+ × X �→ R ∪ {−∞} is strictly
increasing and concave with respect to its first argument (i.e. with respect to consumption). If
c > 0, it holds that u(c, x) > −∞ for all x ∈ X .
(b) The equilibrium value function v : X �→ R ∪ {−∞} defined by

v(x) = max
(ct , xt−1)∞

t=1

∞∑
t=1

ρt−1u(ct , xt−1)

subject to (xt−1, xt ) ∈ � for all t ∈ N,

R(xt−1, xt ) − (n − 1)σ (xt−1) − ct ≥ 0 for all t ∈ N,

x0 = x

satisfies

−∞ < v(x) < ∞ for all x ∈ X \ {0}. (7)

(c) For each x ∈ X there is a unique value h(x) ∈ �x such that

v(x) = u(σ (x), x) + ρv(h(x))

= max
c∈R+ , y∈�x

{u(c , x) + ρv(y) | R(x , y) − (n − 1)σ (x) − c ≥ 0}. (8)

5
One of these examples is the “great fish war” from Levhari and Mirman (1980). This is the same game that
underlies the example of discontinuous equilibrium dynamics presented in Dutta and Sundaram (1993).
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Assumption 2 � is a non-empty and convex set and R : � �→ R+ is a concave function.

Assumption 3 It holds that �0 = {0}, �x⊆�y for all x, y ∈ X such that x ≤ y, and R(0,
0) = 0. Moreover, R(x, y) is increasing in x and decreasing in y. If x 
= 0, then there exists y
∈ �x such that R(x, y) > 0.

Assumption 4 v : X �→ R ∪ {−∞} is a concave function.

Assumption 5 For each x ∈ X\{0}, the transversality condition

lim
t→∞ ρt pt h

t (x) = 0

holds, where pt ∈ ∂v(ht (x)) and ∂v(x) is the subdifferential of v at x ∈ X .6

Note that the equilibrium dynamics generated by a symmetric strict MPNE of the game
(n, X , �, R, u, ρ) are described by the dynamical system xt = h(xt−1), where h: X �→X is
implicitly defined in Assumption 1(c). The following theorem shows that these dynamics
can also be rationalized by a dynamic optimization problem.

Theorem 2 Let (n, X , �, R, u, ρ) be a dynamic game satisfying Assumptions 1–5. There
exists a function U : R+ × X �→ R ∪ {−∞} such that h is the optimal policy function of the
dynamic optimization problem (1, X , �, R, U , ρ).

To appreciate the relevance of Theorem 2 it is necessary to understand the underlying
assumptions. Assumption 1 imposes restrictions on the dynamic game (n, X , �, R, u,
ρ) that correspond one-to-one to those that were imposed on the dynamic optimization
problem (X , �, R, ρ) in Theorem 1. Assumptions 2 and 3 are quite innocuous standard
assumptions that hold in many economic applications.7 The only critical assumption of
Theorem 2 is the concavity of v stated in Assumption 4. Indeed, since the equilibrium
strategies in a MPNE are typically nonlinear functions of the state variables, the concavity
of the equilibrium value functions does not follow from the convexity of the feasible sets
and the concavity of the utility functions.8 In contrast, for a dynamic optimization problem,
these convexity properties imply the concavity of the optimal value function. Because the
proof of Theorem 2 is based on the construction of a dynamic optimization problem with
the same value function as the given dynamic game, we must assume that this function is
concave. It is also worth mentioning that the example from Dutta and Sundaram (1993)

6
A sufficient condition for the necessity of the transversality condition is given by Kamihigashi (2003, theorem
2.2).

7
As can be seen from the proof of Theorem 2, these assumptions may also be replaced by others as far as they
ensure that the optimization problem in equation (8) is a convex one and that Slater’s constraint qualification
is satisfied.

8
Nevertheless, there exist symmetric MPNE of dynamic game models that satisfy Assumptions 1–5. Examples
are the equilibrium of the great fish war model discussed by Levhari and Mirman (1980), which is studied in
the next subsection, and the sustained Nash equilibrium growth model, which is studied in Subsection4.3. It
must also be emphasized that Assumptions 1–5 are imposed on a given strict MPNE. It can be the case that a
game has an MPNE for which these assumptions hold and another MPNE for which they are violated.
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that we referred to at the outset of this section fails to satisfy Assumption 4, which gives rise
to the discontinuity of the equilibrium dynamics.

Next let us make a few comments on the theorem itself. An important point here
is that the rationalization by a dynamic optimization problem preserves the technology
(as described by the transition possibility set � and the return function R) as well as the
discount factor ρ. In other words, we can interpret U as the utility function of a hypothetical
representative agent who has the same time-preference as the players of the game and
who generates the equilibrium dynamics of the MPNE. Rationalizing the equilibrium
dynamics of a dynamic game by a dynamic optimization problem broadens the scope of
the representative agent model, because one can keep track of the dynamic game solution
by studying the more familiar representative agent model.9

As shown in the Appendix, our proof of the existence theorem proceeds by actually
defining a particular utility function of the representative agent and checking that it ratio-
nalizes the path generated by a symmetric MPNE of the dynamic game. The utility function
that we use can be given the following interpretation. A common social welfare function W
used to measure the well-being of society (consisting of n individuals with identical utility
function u) in a period is to evaluate the utility of the typical individual if the aggregate
consumption of society is distributed equally among the n individuals. Thus, W (c, x) =
u(c/n, x); this is the average utilitarian social welfare function. Our utility function of the
representative agent U(c, x) differs from this benchmark W (c, x) in that it puts more
weight on average consumption (c/n). That is, given the stock x, the marginal utility from
consumption is larger for our utility function U than for the welfare function W .10

It is important to note that the utility function, U , that we use is not proved to be the
unique utility function that rationalizes the path generated by a symmetric MPNE of the
dynamic game. Thus, it is not clear whether the above interpretation can always be given to
a utility function that rationalizes the path generated by a symmetric MPNE of the dynamic
game. We leave this as an interesting open question.

4.2 The Levhari–Mirman example

Theorem 2 shows that, under certain assumptions, it is possible to rationalize the equi-
librium dynamics generated by a game through a dynamic optimization problem. Such
a rationalization, however, is typically not unique. Therefore, in the present subsection,
we want to reconsider the same question from a slightly different angle. In contrast to the
previous subsection, we now consider a very specific game (n, X , �, R, u, ρ) in which the
utility function u does not depend on the state variable, and we require that the equilibrium
dynamics generated by that game are rationalized by a dynamic optimization problem that
preserves the technology (� and R) but not necessarily the discount factor ρ. Moreover, we

9
In the case where the policy function h is Lipschitz continuous, another rationalizability result follows
immediately from theorem 3 of Mitra and Sorger (1999). However, the optimization problem that is used
to prove the Mitra–Sorger theorem typically neither shares the technology nor the time-preference with the
game, unlike the case in Theorem 2.

10
The stock effect is not unambiguous because the equilibrium strategy and a Lagrange multiplier, both of
which depend on the stock x, are used in our definition of U .
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require that the utility function of the representative agent, U , also depends on consump-
tion only. We will show that this has interesting implications for the utility function U and
the discount factor δ of the corresponding dynamic optimization problem.

The example we want to study is the famous “great fish war” from Levhari and Mirman
(1980). This game (n, X , �, R, u, ρ) is specified by n = 2, X = [0, 1], � = {(x, y) | 0 ≤ y ≤
xα}, R(x, y) = x − y1/α , u(c, x) = ln (c) and ρ ∈ (0, 1). It is well known that a symmetric
strict MPNE of this game is given by (σ , σ ), where

σ (x) = (1 − αρ)x

2 − αρ
,

and that the state dynamics generated by this MPNE are given by xt = h(xt−1), where

h(x) =
(

αρx

2 − αρ

)α

. (9)

It is straightforward to verify that h is the optimal policy function of the dynamic optimiza-
tion problem (1, X , �, R, u, δ) with δ = ρ/(2 − αρ). Note that both the return function and
the utility function of this dynamic optimization problem are the same as in the underlying
dynamic game. Note, furthermore, that the discount factors of the two models, ρ and δ,
respectively, do not coincide but that δ is smaller than ρ.

In the following theorem we show that the preferences (instantaneous utility function
and discount factor) of any dynamic optimization problem that allows the rationalization of
the game dynamics equation (9) are uniquely determined up to an increasing affine trans-
formation of the instantaneous utility function as long as we impose that the technology
is described by � and R. This uniqueness result provides us with useful information about
the relationship between the parameters of the original dynamic game and the parameters
of the surrogate representative agent model.

Theorem 3 Suppose that the function h defined by (9) is rationalized by a dynamic optimiza-
tion problem of the form (1, X , �, R, U , δ), where U : [0, 1] �→ R ∪ {−∞} is increasing and
strictly concave on [0, 1] and twice continuously differentiable on the interior of its domain,
and where δ ∈ (0, 1). Then it follows that δ = ρ/(2 − αρ) and that U is an increasing affine
transformation of u.

Theorem 3 shows that, to generate the equilibrium dynamics of the “great fish war”
in a dynamic optimization problem, the decision-maker in the latter model must use
(essentially) the same utility function as the agents in the dynamic game and he or she must
have a higher degree of impatience compared to the players of the dynamic game.

Levhari and Mirman (1980) show that the cooperative solution of their model (2, X ,
�, R, u, ρ) generates the dynamics xt = h̄(xt−1) with

h̄(x) = (αρx)α.

The resource stock is lower at each date t in the symmetric MPNE compared to the
cooperative solution. Furthermore, the steady state in the former is lower than in the

370 International Journal of Economic Theory 8 (2012) 361–379 C© IAET



Ken-Ichi Akao et al. Rationalizability results for dynamic games

latter. The cooperative solution should not be confused with the dynamic optimization
problem (1, X , �, R, U , δ) from Theorem 3. The dynamics of the former differ from
the equilibrium dynamics of the game, whereas the dynamic optimization problem from
Theorem 3 produces by construction the same dynamics as the original game. However, the
phenomenon of overexploitation in the symmetric MPNE (compared to the cooperative
solution) is reflected precisely in the higher degree of impatience of the representative agent
compared to that of the two players in the game.

The relation between the discount factor of the dynamic optimization problem, δ,
and that of the dynamic game, ρ, implies a discount factor restriction for the dynamic
optimization problem. Since δ = ρ/(2 − αρ) and ρ ∈ (0, 1), it follows that δ < 1/(2 −
α) independently of the actual value of the common discount factor of the two players.
In particular, even if the players are arbitrarily patient, that is, as ρ approaches 1, the
representative agent’s discount factor is uniformly bounded below 1.

4.3 Example of sustained Nash equilibrium growth

As a second example of rationalizability of a dynamic game solution by the solution
of a representative agent model, we consider a framework in which it is possible for
the economy to produce sustained growth of consumption by accumulating capital, and
the typical agent’s utility function depends both on the agent’s own consumption and the
aggregate capital stock of the economy (a wealth effect). We are interested in characterizing
the path of equilibrium growth, where the notion of equilibrium is the typical one used in
dynamic games; namely, a strict MPNE.

The optimal growth problem, in which utility is derived from consumption as well as the
capital stock, was first studied (in the standard neoclassical model in which per-capita con-
sumption remains bounded on all paths) in Kurz (1968). For a model in which unbounded
growth of per-capita consumption is possible, Roy (2010) provides a comprehensive study
of the optimal growth problem.

In the example that we study, the game (n, X , �, R, u, ρ) is specified by n = 2, X = R+,
� = {(x, y) | 0 ≤ y ≤ Ax}, R(x, y) = Ax − y, u(c, x) = cαxβ and ρ ∈ (0, 1). The parameters
of the model are assumed to satisfy the following restrictions:

A > 1; α + β < 1; ρ Aα+β < 1.

It can be shown that a symmetric strict MPNE of this game is given by (σ , σ ), where σ (x) =
γ Ax and where γ ∈ (0, 1/2) is the unique solution to the following equation:

α(1 − 2γ )1−α−β

ρ Aα+β{(1 − γ )α + γβ} = 1. (10)

The dynamics of the capital stock generated by this MPNE are given by xt = h(xt−1), where

h(x) = (1 − 2γ )Ax for all x ≥ 0.

If one considers the representative agent’s dynamic optimization problem (1, X , �, R, u, r)
with r ∈ (0, 1) satisfying rAα+β < 1, then it can be shown that s(x) = ηAx is the optimal
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consumption policy function, where η ∈ (0, 1) is the unique solution to the following
equation

α(1 − η)1−α−β

r Aα+β{α + ηβ} = 1. (11)

To rationalize the strict MPNE (σ , σ ), one has to generate the path of capital stocks,

xt+1 = (1 − 2γ )Axt ,

from every initial capital stock, x0 = x > 0, in the representative agent model. This means
that the optimal consumption function, s(x), in the representative agent model must be
such that η = 2γ . Since γ is given by (10) and η is given by (11), we must have

r = ρ
{α + γ (β − α)}

{α + 2γβ} < ρ.

That is, to rationalize the strict MPNE (σ , σ ), in the representative agent model, the
representative agent must use a smaller discount factor than the players in the dynamic
game.

4.4 A more general framework

In the previous two subsections we provide examples in which the equilibrium dynamics
of a game can be rationalized by a dynamic optimization problem in such a way that the
technology is preserved.11 Both examples show that preserving the technology and the
instantaneous utility function implies that the discount factor of the optimization problem
is smaller than that of the game. In the Levhari and Mirman example we show that preserving
the technology implies that the instantaneous utility function is also preserved. In the
present subsection, we return to a more general framework with isoelastic instantaneous
utility function and we assume that both the technology and the instantaneous utility
function are preserved. Under these assumptions, we generalize the findings from the two
examples by proving that the discount factor of the dynamic optimization problem must
be smaller than that of the game.

Let (n, X , �, R, u, ρ) be a dynamic game with a continuously differentiable return
function R. We denote the partial derivatives of R with respect to its two arguments by
R1(x, y) = ∂R(x, y)/∂x and R2(x, y) = ∂R(x, y)/∂y. Assume that R1(x, y) > 0 for all (x,
y) ∈ � and that the instantaneous utility function u is a concave and isoelastic function
of consumption; that is, there exists η > 0 such that −cu′′(c)/u′(c) = η for all c > 0. Let
σ : X �→ R be a symmetric MPNE strategy of the game and let h: X �→ X be the function

11
The example of sustained Nash equilibrium growth can be extended with instantaneous utility function u(c,
x) = [(xφ(c/x))1−η − 1]/(1 − η), where φ is an increasing and concave function with φ(0) = 0 and where η >

0. The instantaneous utility function includes u(c, x) = cαxβ as a special case (φ(z) = zα/(α+β) and η = 1 −
(α + β)). In the case where φ is the identity map, we have a standard model of economic growth with a linear
technology, whereas the case where φ is strictly concave allows one to capture wealth effects as well.

372 International Journal of Economic Theory 8 (2012) 361–379 C© IAET



Ken-Ichi Akao et al. Rationalizability results for dynamic games

that describes the associated equilibrium dynamics. By definition, these functions satisfy
σ (x) = n−1R(x, h(x)) for all x ∈ X .

Theorem 4 Suppose that the function h is rationalized by the dynamic optimization problem
(1, X , �, R, u, δ). Let (xt )∞

t=0 be a path generated by h such that xt ∈ int �xt−1 for all t ∈ N.
If there exists a period t ≥ 1 such that the equilibrium strategy σ is differentiable at xt and
σ ′(xt ) > 0, then ρ > δ.

The above theorem indicates that if an outcome of a dynamic game is rationalized by
a dynamic optimization problem involving a representative agent with the same instan-
taneous utility function as the players in the game, then the representative agent must
be more impatient than the players of the original game. In other words, the inefficiency
caused by the strategic interaction among players is translated into heavier discounting by
the representative agent.

The following corollary considers the case where σ ′(x̄) > 0 holds at an optimal steady
state x̄ .

Corollary 1 Suppose that the function h is rationalized by the dynamic optimization problem
(1, X , �, R, u, δ). If there is an interior optimal steady state x̄ = h(x̄) > 0 that is stable
(|h′(x̄)| < 1), then it follows that ρ > δ.

5 Concluding remarks

In the present paper we have investigated how the dynamics generated by dynamic op-
timization problems are related to those generated by dynamic games. More specifically,
we have explored whether dynamics generated by models from one of these two classes
can also be rationalized by models from the other class under the additional restriction
that some of the fundamentals are preserved by the rationalization. Our results have very
interesting implications about those fundamentals that are not preserved by the rational-
ization. For example, we have shown that a non-cooperative dynamic game can generate
the same dynamics as a representative agent problem with the same technology and time-
preference provided that the utility function of each player displays a positive stock effect. We
have also shown that the equilibrium dynamics of a game can be rationalized by a represen-
tative agent problem with the same technology and utility function only if the representative
agent discounts the future more heavily. These findings provide new interpretations of the
effects of strategic interaction in dynamic settings.

6 Proofs

Proof of Theorem 1 From the assumptions stated in the theorem, for all (x, y) ∈ � with
y 
= h(x), the following holds:

∞ > V(x) = R(x , h(x)) + ρV(h(x)) > R(x , y) + ρV(y). (12)
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Moreover, since R(x, y) ≥ 0 for all (x, y) ∈ �, it follows that V (x) is non-negative for all x
∈ X . Finally, the assumption V (x) < ∞ implies that

lim
t→∞ ρt V(ht (x)) = 0 for all x ∈ X. (13)

This is the case because

∞ > V(x) =
∞∑

t=1

ρt−1 R(ht−1(x), ht (x))

= lim
T→∞

(
T∑

t=1

ρt−1 R(ht−1(x), ht (x)) + ρT V(hT (x))

)
.

We now proceed in two steps. The first step consists of the following lemma, in which
u1 denotes the partial derivative of u with respect to its first argument.

Lemma 1 Let the assumptions of Theorem 1 be satisfied. Furthermore, let n ≥ 2 be an
arbitrary integer and assume that there exists a function u satisfying the following assumptions
Pu1–Pu3:

Pu1: For all x ∈ X, it holds that u(c, x) is a strictly increasing and concave function
of c.

Pu2: For all x, ∈ X , u1(n−1R(x, h(x)), x) exists and satisfies u1(n−1R(x, h(x)), x) = n−1.
Pu3: For all x ∈ X, it holds that u(n−1R(x, h(x)), x) = n−1R(x, h(x)).
Then, it follows that h is rationalized by the dynamic game(n, X , �, R, u, ρ) through a

symmetric strict MPNE .

PROOF 1: Suppose that the function u satisfies assumptions Pu1–Pu3 and that all players
other than player i use the Markovian strategy σ (x) = n−1R(x, h(x)). Then, player i’s
problem is written as

max
(xt−1)∞

t=1

{
lim inf

T→∞

T∑
t=1

ρt−1u (R(xt−1, xt ) − (n − 1) σ (xt−1), xt−1)

}

subject to (xt−1, xt ) ∈ � for all t ∈ N,

R(xt−1, xt ) − (n − 1) σ (xt−1) ≥ 0 for all t ∈ N. (14)

If h is the optimal policy function for this problem, then it follows that σ is the unique best
response of player i, because R(xt−1, h(xt−1)) − (n − 1)σ (xt−1) = n−1R(xt−1, h(xt−1)) =
σ (xt−1). This, in turn, implies that (σ , σ , . . . , σ ) is a MPNE and that h is rationalized by
the dynamic game (n, X , �, R, u, ρ). Therefore, all we need to show is that h is the optimal
policy function of problem (14).
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To this end, note that Pu 1, Pu2 and (12) imply for all (x, y) ∈ � that

u (R(x , h(x)) − (n − 1)σ (x), x) − u (R(x , y) − (n − 1)σ (x), x)

≥ {u1 (R(x , h(x)) − (n − 1)σ (x), x)} [R(x , h(x)) − R(x , y)]

= n−1 [R(x , h(x)) − R(x , y)]

≥ n−1[ρV(y) − ρV(h(x))].

Therefore, for all (x, y) ∈ � it holds that

u (R(x , h(x)) − (n − 1)σ (x), x) + n−1ρV(h(x))

≥ u (R(x , y) − (n − 1)σ (x), x) + n−1ρV(y). (15)

Next, we note that assumption Pu3 and the definition of σ imply that

u (R(x , h(x)) − (n − 1)σ (x), x) = n−1 R(x , h(x)). (16)

It follows from this equality together with (12) and (15) that

n−1V(x) = max
y

{u (R(x , y) − (n − 1)σ (x), x) + ρn−1V(y) | (x , y) ∈ �} (17)

holds for all x ∈ X . Since V (x) is bounded from below, the path (ht (x))∞
t=0 is an optimal

path for problem (14) starting from the initial state x, which is proved by applying the
proof of lemma 3.1 in Dockner, Jørgensen, Long, and Sorger (2000). We have also shown
that the optimal value function of that problem is n−1V (x) and that the corresponding
Bellman equation is (17). It remains to be shown that the right-hand side of (17) has a
unique maximizer. To this end note that (12) implies that (15) holds with strict inequality
if y 
= h(x). However, this obviously implies that the unique maximizer on the right-hand
side of (17) is given by h(x), which completes the proof of the lemma. �

The second step of the proof of Theorem 1 is to show that there exists a utility func-
tion u satisfying Pu1–Pu3. However, this is obvious as can be seen from the following
examples:

u(c , x) = c 1/n[n−1 R(x , h(x))](n−1)/n

and

u(c , x) = 1

n
c + n − 1

n
[n−1 R(x , h(x))].

Proof of Theorem 2 The fact that u is strictly increasing in c implies that the inequality in
(8) must hold as an equality if the consumption rate c equals its equilibrium value σ (x).
This implies that

σ (x) = n−1 R(x , h(x)). (18)
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Also note that

lim
t→∞ ρtv(ht (x)) = 0 for all x ∈ X \ {0} (19)

must hold for all x ∈ X because of the results in (7) and (8). When x = 0, Assumption
3 implies that the feasible consumption and the capital stock at the end of the period are
uniquely given by (c, y) = (0, 0). Therefore, the equilibrium strategy for this case must be
σ (0) = 0 and h(0) = 0. However, if x 
= 0, then the maximization problem in (8) satisfies
Slater’s constraint qualification: R(x, y) − (n − 1)σ (x) − c is concave in (c, y) and its value
is strictly positive at some (c, y) such that 0 ≤ y ≤ h(x) and c ≥ 0. Therefore, by the saddle
point theorem, for each x ∈ X\{0}, there is a Lagrange multiplier λ(x) ≥ 0 such that for
all λ ≥ 0, for all c ≥ 0 and for all y ∈ �x it holds that

u(σ (x), x) + ρv(h(x)) + λ [R(x , h(x)) − (n − 1)σ (x) − σ (x)]

≥ u(σ (x), x) + ρv(h(x)) + λ(x) [R(x , h(x)) − (n − 1)σ (x) − σ (x)]

≥ u(c , x) + ρv(y) + λ(x) [R(x , y) − (n − 1)σ (x) − c] .

(20)

We now define the function U : R+ × X �→ R by

U (c , x) = u(c/n, x) + λ(x)(n − 1) [c/n − σ (x)] .

Since u is strictly increasing with respect to consumption and λ(x) ≥ 0, it follows that U
is also strictly increasing with respect to c. As argued at the beginning of Section 3, it is
sufficient to prove that h is rationalized by the dynamic optimization problem (X , �, R̃, ρ),
where the function R̃ : � �→ R ∪ {−∞} is defined by

R̃(x , y) = U (R(x , y), x).

To show this we first prove the following auxiliary result.

Lemma 2 Under Assumptions 1–4, the functional equation

v(x) = R̃(x , h(x)) + ρv(h(x)) = max
y

{R̃(x , y) + ρv(y) | (x , y) ∈ �} (21)

holds for all x ∈ X\{0}.

PROOF 2: Assume x ∈ X\{0} and note that u (σ (x), x) = U(nσ (x), x). From (20) it follows
that whenever σ (x) and h(x) satisfy σ (x) ≥ 0, h(x) ∈ �x , and R(x, h(x)) − σ (x) ≥ 0, then
the Lagrange multiplier λ(x) is such that

U (nσ (x), x) + ρv(h(x)) + λ [R(x , h(x)) − nσ (x)]

≥ U (nσ (x), x) + ρv(h(x)) + λ(x) [R(x , h(x)) − nσ (x)]

≥ U (nc , x) + ρv(y) + λ(x) [R(x , y) − nc] .
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Because the saddle point condition holds, we have for all c ≥ 0 and all y ∈ �x sat-
isfying R(x, y) − nc ≥ 0 that U(nσ (x), x) + ρv(h(x)) ≥ U(nc, x) + ρv(y). Fi-
nally, u(σ (x), x) = U(nσ (x), x) implies v(x) = R̃(x , h(x)) + ρv(h(x)). Therefore, we
have

v(x) = R̃(x , h(x)) + ρv(h(x))

= U (nσ (x), x) + ρv(h(x))

= max
c , y

{U (nc , x) + ρv(y) | c ≥ 0, y ∈ �x , R(x , y) − nc ≥ 0} ,

which is equivalent to (21). �

To complete the proof of Theorem 2, first note that, since v is concave and R̃ is concave
in the second argument, along the equilibrium path (ht (x))∞

t=0 there is a sequence of
support prices (pt )∞

t=0 such that, for all t ≥ 1, pt ∈ ∂v(ht (x)) and

R̃(ht−1(x), ht (x)) − pt−1ht−1(x) + ρ pt ht (x) ≥ R̃(y, z) − pt−1 y + ρ pt z

for all (y, z) ∈ �

holds.12 From Assumption 3 it follows that pt ≥ 0. Then, by Assumption 5,

∞∑
t=1

ρt−1 R̃(ht−1(x), ht (x)) − lim inf
T→∞

T∑
t=1

ρt−1 R̃(xt−1, xt )

≥ lim sup
T→∞

(ρT pT xT − ρT pT hT (x)) ≥ 0

holds for all feasible paths (xt−1)∞
t=1 starting from x0 = x ∈ X\{0}. Therefore, (ht (x))∞

t=0

is an optimal path for the optimization problem (X , �, R̃, ρ).

Proof of Theorem 3 Since � is convex and compact, R and U are continuous and concave,
and δ ∈ (0, 1), it follows that (1, X , �, R, U , δ) has an optimal solution. Let g : X �→[0, 1]
be the equilibrium strategy; that is, c t = g(xt−1) holds for all t along the optimal solution.
Because U is increasing, this implies that ct = g (xt−1) = xt−1 − x1/α

t and, because the
model rationalizes the state dynamics h, it follows that g(x) = x − h(x)1/α . Substituting
the functional form of h stated in (9) and solving for g(x) we obtain g(x) = γ x, where γ =
2(1 − αρ)/(2 − αρ) ∈ (0, 1).

The Euler equation of (1, X , �, R, U , δ), in contrast, can be written as

U ′(ct )R2(xt−1, xt ) + δU ′(ct+1)R1(xt , xt+1) = 0,

where R1 and R2 are the partial derivatives of the return function with respect to its first
and second argument, respectively. Exploiting R(x, y) = x − y1/α and c t = γ xt−1 this Euler

12
See McKenzie (1986).
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equation can also be written in the form

U ′(γ x) = αδ

(1 − γ )1−αx1−α
U ′(γ (1 − γ )αxα)

or, more compactly, as

S(c) = λS(θcα). (22)

Here, S(c) = cU ′(c), θ = γ 1−α(1 − γ )α and λ = αδ/(1 − γ ). Note that S is continuous
and that θ ∈ (0, 1). Iterating equation (22) it follows that

S(1) = λS(θ) = λ2S(θ1+α) = · · · = λm+1S(θ1+α+···+αm

)

holds for all m ∈ N. Because of limm→+∞ θ1+α+···+αm = θ1/(1−α) > 0, the above equation
can only hold for all m if λ = 1. By the definition of λ this implies γ = 1 − αδ and, hence,
δ = ρ/(2 − αρ). It remains to be shown that U(c) = A + Bln c for some real numbers A
and B > 0.

From equation (22) and λ = 1 it follows that S(c) = S(θcα) for all c > 0. Differentiating
with respect to c and multiplying the resulting equation by c it follows that F(c) = αF(θcα),
where F(c) = S′(c)c. Note that this implies

F (c) = αF (θcα) = α2 F (θ1+αcα2

) = · · · = αm+1 F (θ1+α+···+αm

cαm+1

)

for all m ∈ N. Because limm→+∞ θ1+α+···+αm = θ1/(1−α) > 0 and limm→+∞αm+1 = 0 it
follows from the above equation that F(c) = 0. Since c > 0 was arbitrary, we obtain
F(c) = 0 for all c > 0 which, in turn, implies that S′(c) = 0 for all c > 0. However,
S′(c) = U ′(c) + cU ′′(c) and it is well known that any twice continuously differentiable
function U for which U ′(c) + cU ′′(c) = 0 holds for all c > 0 must be an increasing
affine transformation of the logarithmic utility function u(c) = ln c. This completes the
proof.

Proof of Theorem 4 Because each player’s consumption in period t in the game (n, X , �,
R, u, ρ) is given by R(xt−1, xt ) − (n − 1)σ (xt−1), the Euler equation for periods t and t +
1 is

u′(ct )R2(xt−1, xt ) + ρu′(ct+1)[R1(xt , xt+1) − (n − 1)σ ′(xt )] = 0.

Rewrite this equation as

R2(xt−1, xt ) + ρu′(ct+1)

u′(ct )
[R1(xt , xt+1) − (n − 1)σ ′(xt )] = 0.

Since h is rationalized by the dynamic optimization problem (1, X , �, R, u, δ), it follows
that the path (xt )∞

t=0 also satisfies the Euler equation of (1, X , �, R, u, δ), which is
given by

u′(nct )R2(xt−1, xt ) + δu′(nct+1)R1(xt , xt+1) = 0.
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This equation can be rewritten as

R2(xt−1, xt ) + δu′(nct+1)

u′(nct )
R1(xt , xt+1) = 0.

Because it holds for the isoelastic utility function that u′(nct+1)/u′(nct ) = u′(c t+1)/u′(c t ),
it follows from the two Euler equations that

(ρ − δ)
u′(ct+1)

u′(ct )
R1(xt , xt+1) = (n − 1)σ ′(xt )

ρu′(ct+1)

u′(ct )
> 0,

where we have made use of R1(x, y) > 0 for all (x, y) ∈ � and σ ′(xt ) > 0. Therefore, it
must hold that ρ > δ.

Proof of Corollary 1 Since σ (x) = n−1R(x, h(x)) holds for all x ∈ X , we have σ ′(x̄) =
n−1[R1(x̄ , x̄) + R2(x̄ , x̄)h′(x̄)]. In contrast, from the Euler equation of the optimization
problem at the steady state, we have R2(x̄ , x̄) = −δR1(x̄ , x̄) < 0. Combine these results to
get σ ′(x̄) = n−1 R1(x̄ , x̄)[1 − δh′(x̄)] > 0. The result follows now from Theorem 4.
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